1995 Revision 9.2017

GRUPPE

3 Section

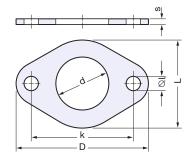
	FLANSCHNORM / PASSEND FÜR	ABMESSUNGEN ¹⁾ ≈ mm Dimensions ¹⁾ ≈ mm					BESTELL- NUMMER		
	Flange Standard / Suitable for						Part Number		
		D	d	Øk	Ø١	L	s	Туре	
-	Bronze-Wellrohre DN 20 BW 20, Flansche nach DIN 5435	76	23	58	10	46	2	FD 20	
							3	FD 20 - 3	
	Bronze-Wellrohre DN 25 BW 25, Flansche nach DIN 5435	90	27	68	12	55	2	FD 25	
							3	FD 25 - 3	
	Bronze-Wellrohre DN 32 BW 32, KW 32, Flansche nach DIN 5435	100	36	78	11	64	2	FD 32	
		100			11		3	FD 32 - 3	
	Bronze-Wellrohre DN 40 BW 40, KW 40, Flansche nach DIN 5435	104	43	82	12	68	2	FD 40	
							3	FD 40 - 3	
	Bronze-Wellrohre DN 50 BW 50, KW 50, Flansche nach DIN 5435	126	52	100	12	80	2	FD 50	
					12		3	FD 50 - 3	
	Peilverschluss Tankwagen	118	50	90	12	80	2	FD 118	
							3	FD 118 - 3	
	Peilvorrichtung TW 600 für Tankwagen	138	52	100	12	70	2	FD 650	
					12		3	FD 650 - 3	

Ausführliche Angaben, Materialspezifikation und technische Daten umseitig.

Øk

Detailed information, material specification and technical data see overleaf.

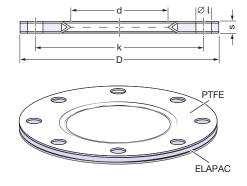
Gaspendelventil Tankwagen	108	73	91	4 x 6,5	3	FD 108 TM
Gasrücklaufleitungsflansch	115	45	90	4 x 13,5	3	FD 115/45 TM
DN 50 TW 1	154	52	130	8 x 12	3	FD 154/52 TM
DN 80 TW 1	154	82	130	8 x 12	3	FD 154 TM
Kippsicherung	154	104	130	8 x 12	3	FD 154/104 TM
DN 100 TW 3	174	102	150	8 x 14	3	FD 174 TM
DN 65 PN 10 / 16	185	68	145	4 x 18	3	FD 185 TM
DN 80 PN 10 / 16	200	82	160	8 x 18	3	FD 200 TM
DN 125 TW 5	204	127	176	8 x 14	3	FD 204 TM
DN 100 PN 10 / 16	220	100	180	8 x 18	3	FD 220 TM
Bodenventil DN 80	220	140	190	8 x 15	3	FD 220/140 TM
Bodenventil innenliegend	220	160	190	8 x 14	3	FD 220/160 TM
Sonderflansch	225	152	190	8 x 12	3	FD 225 TM
Seitenfüllanschluss	229	102	170	8 x 19	3	FD 229 TM
API-Kupplung	232	177	212,5	12 x 10	3	FD 232 TM
Pumpenflansch	233	150	210	8 x 14	3	FD 233 TM
Sonderflansch	235	155	210	8 x 18	3	FD 235 TM
DN 150 TW 7	240	152	210	12 x 14	3	FD 240 TM
Bodenventil	270	202	240	12 x 14	3	FD 270 TM
Inhaltsanzeiger	336	260	311	12 x 12	3	FD 336 TM
	Platten-Format: 1400 x 1000 mm				2	ELAPAC-Platte 2 mm


Oval-Flanschdichtungen aus ELAPAC-FD. *)

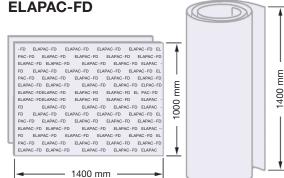
ZUR BEACHTUNG: Die bei starkem Anziehen der Schrauben an Ovalflanschen entstehende Verformung wird besser durch 3mm Dichtungen ausgeglichen, besonders bei Wellrohren mit kleiner Umbördelung, wo die ganze Kraft auf den schmalen Dichtbereich wirkt.

Ovalflange seals of **ELAPAC-FD**. *)

PLEASE NOTE: It is better to use 3 mm seals to compensate the deformation on oval flanges caused by too strong tightening of the screws, particularly on corrugated tubes with small flanging where the total force is applied on the small sealing area.


Type FD

Rundflanschdichtungen aus ELAPAC-FD wie auf Seite 381 beschrieben, zusätzlich mit außen offener PTFE-Ummantelung 0,4mm dick. Geeignet für alle Medien gemäß Übersicht auf Seite 396 Spalte **TM**.


Round flange seals of **ELAPAC-FD** as described on page 381, additionally with 0.4mm thick PTFE cover, open to the outside, as shown. Suitable for all media as per resistance chart on page 396, column TM.

Type FD...TM

Andere Abmessungen auf Anfrage · Other measurements on request

ELAPAC-Flanschdichtungen FD

WERKSTOFF:

ELAPAC-FD ist eine Dreikomponentenmischung aus

GUMMI (NBR) vulkanisiert, für die Bindung und Knickunempfindlichkeit. Es verbessert die Gasdichtigkeit und erlaubt einen breiten Einsatzbereich.

KORK für die Kompressibilität und Anpressungsfähigkeit. Dadurch quetscht sich die Dichtung nicht nach innen oder nach außen heraus. Die Dichtung 'setzt' sich nicht und kann meistens wiederverwendet werden.

FASERN verleihen dem Material die erforderliche 'Brettigkeit' und die Festigkeit, um Flanschdichtungen von der Seite her in enge Spalten einzuschieben. Die Quellwerte für faserverstärkte Mischungen liegen deutlich niedriger als bei reinen Gummidichtungen.

Weitere Vorzüge: Keine Auslaugung von Weichmachern. Kein Schrumpfen oder Verhärten bei Austrocknung. Keine Beeinträchtigung oder Verfärbung der Medien. Keine Verhärtung bei Temperaturbeanspruchung von -30° bis +100° Celsius. Kein 'Ankleben' am Flansch. Zusätzliche 'flüssige' Dichtungen sind nicht erforderlich. Dadurch die gute Wiederverwendbarkeit.

BESTÄNDIGKEIT:

Beständigkeitsübersicht für gebräuchliche Mediengruppen siehe Seite 396, Spalte **FD**. Die Angaben beziehen sich auf eingebaute Flanschdichtungen. Dabei kommt nur der Innenrand der Dichtung mit dem Medium in Kontakt. Daher wirkt ein möglicher Angriff (z.B. B) wegen Quellung) nur in geringer Eindringtiefe, so dass der Einsatz trotzdem möglich ist.

Wenn die Dichtung bei Laboruntersuchungen ganz in das Medium eingelagert wird, sind Quellung und Festigkeitsverlust natürlich größer.

Wenn die Medienbeständigkeit von **ELAPAC** nicht ausreicht, aber die gute Kompressibilität gewünscht wird, bietet sich die Sonderausführung '**TM'** mit PTFE-Ummantelung an. Beständigkeitsangaben s. Seite 396, Spalte '**TM'**.

Einsatz für Lebensmittel: Ohne PTFE-Ummantelung ist ELAPAC-FD nicht geeignet, weil Mischungsbestandteile die Qualität der Nahrungsund Genussmittel beeinflussen können. Mit PTFE-Ummantelung ist ELAPAC geeignet.

EINSATZBEREICH:

Als elastische Flanschabdichtung im Tankwagen- und Tankanlagenbau und überall dort, wo unebene Dichtflächen eine besonders hohe Anpassungsfähigkeit verlangen, wo die Flanschverbindungen eine gute Restelastizität besitzen sollen, um Rohrbrüche zu vermeiden, und wo einfache Dichtungswerkstoffe versagen, weil nur kleine Schraubenkräfte zur Verfügung stehen.

Nicht geeignet für schmale Gewindedichtungen, da zu weich und Querfestigkeit nicht groß genug. Das Medium kann zu weit eindringen. Nicht geeignet ferner für Einsatzfälle, bei denen die Flanschdichtung nur in einem schmalen Ringbereich von 2 bis 3 mm gequetscht wird. Durchquetschgefahr vor allem bei 2 mm Materialstärke. Bei örtlicher Überbeanspruchung 3 mm verwenden.

GASDICHTIGKEIT:

Wegen der Faseranteile der Mischung muss bei Gasen vor allem bei hohem Vakuum bei schmalen Stegbreiten der Dichtung mit geringfügigem Gasdurchtritt gerechnet werden. Bei normalen Stegbreiten ist **ELAPAC** gut geeignet.

TECHNISCHE DATEN:

Härte, Shore A			86	± 3
Zugfestigkeit	längs in Faserrichtung quer zur Faserrichtung	_		N/mm² N/mm²
Reißdehnung	längs quer	≥ >		N/mm ² N/mm ²
Zusammenpressung	4	_	75	%
Rückfederung auf			90	%
Druckverformungsrest 2		40	%	
Weiterreißwiderstand	längs	≥		N/mm²
	quer	≥	10	N/mm ²
Betriebsdruck max.			25	bar
Farbe:				blau
Kennzeichnung/Markier	ELAPAC-FD			

MATERIAL:

ELAPAC-FD is a three component mixture, made of

RUBBER (NBR) vulcanised, for the adhesion and resistance to kinking.

CORK for compressibility and sealing capability. When tightening the flange seal does not move towards the outer or inner edge of the sealing faces. The flange seal does not 'settle', and can be re-used in most cases.

FIBRES give the material the necessary rigidity and the stability to insert flange seals into narrow gaps from the side. The values for swelling are considerably lower for fibre reinforced mixtures than for plain rubber seals.

Further advantages: No leaching out of softening agents. No shrinking or hardening through drying. No influence on or discoloration of media. No hardening at temperature range of -30° up to +100° Celsius. No sticking on flange. Additional 'adhesives' are not necessary. Therefore good reusability.

RESISTANCE:

Resistance chart for common media see page 396, column **FD**. The details refer to fitted flange seals. Only the inner rim of the flange seal is in contact with the medium. In the event of a possible attack (e.g. (B), see resistance chart page 396) this would only result in low penetration and the use is still possible.

If the flange seal is completely immerged in the medium during laboratory tests, swelling and loss of stability is of course higher.

If the resistance of **ELAPAC** is not sufficient but good compressibility is required, we offer the special design '**TM**' seal which is PTFE encapsulated. Resistance chart on page 396, column '**TM**'.

Application of foodstuffs: ELAPAC-FD is only suitable with PTFE-cover, otherwise mixture particles can influence the quality of the foodstuffs.

APPLICATION:

As an elastic flange seal for tank truck and tank plant construction etc., where rough sealing surfaces require a high adaptability, where flange seals should still have good flexibility to avoid pipe fractures or simple sealing materials because little or no force can be used to tighten the joint.

Not suitable for use as thread seal, because the material is too soft and does not have enough lateral strength, this allows the medium to attack the seal material. Also not suitable for applications where the flange seal is only squashed on 2 mm to 3 mm of the total width. Care should be taken not to squash the material to much especially the 2 mm material, if in doubt please use the 3 mm material.

GAS IMPERMEABILITY:

Due to the fibre content of **ELAPAC**; gas permeability is to be expected when using seals with narrow width – especially at high vacuum operation.

TECHNICAL DATA:

hardness, Shore A			86	± 3
tensile strength	longitudinal lateral	_		N/mm² N/mm²
elongation at break	longitudinal lateral	_		N/mm² N/mm²
compressibility			75	%
recovery			90	%
compression set 24h, 7	70°C		40	%
tear resistance	longitudinal lateral	_	•	N/mm² N/mm²
working pressure maxii	mal		25	bar
colour				blue
marking		pr	int	ELAPAC-FD